Analysis and Approximation for Solving Highly Coupled Master Differential Equations of Receptor Interactions
نویسنده
چکیده
Humoral immunity is one component of the human immune system and is the most important determinant of whether an invading pathogen (such as bacteria or viruses) establishes infection. This form of immunity is mediated by B lymphocytes and involves the neutralizing of pathogen receptor binding sites to inhibit the pathogen's entry into target cells. A master equation in both discrete and in continuous form is presented for a pathogen bound at n sites becoming a pathogen bound at m sites in a given interaction time. To track the time-evolution of the antibody-receptor interaction, it is shown that the process is most easily treated classically and that in this case the master equation can be reduced to an equivalent one-dimensional diffusion equation. Thus, well known diffusion theory can be applied to antibody-cell receptor interactions. Three distinct cases are considered depending on whether the probability of antibody binding compared to the probability of dissociation is relatively large, small or comparable and numerical solutions are given.
منابع مشابه
Modified Wavelet Method for Solving Two-dimensional Coupled System of Evolution Equations
As two-dimensional coupled system of nonlinear partial differential equations does not give enough smooth solutions, when approximated by linear, quadratic and cubic polynomials and gives poor convergence or no convergence. In such cases, approximation by zero degree polynomials like Haar wavelets (continuous functions with finite jumps) are most suitable and reliable. Therefore, modified numer...
متن کاملNon-polynomial Spline Method for Solving Coupled Burgers Equations
In this paper, non-polynomial spline method for solving Coupled Burgers Equations are presented. We take a new spline function. The stability analysis using Von-Neumann technique shows the scheme is unconditionally stable. To test accuracy the error norms 2L, L are computed and give two examples to illustrate the sufficiency of the method for solving such nonlinear partial differential equation...
متن کاملA new approach for solving the first-order linear matrix differential equations
Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solvin...
متن کاملSolving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملSpice Compatible Model for Multiple Coupled Nonuniform Transmission Lines Application in Transient Analysis of VLSI Circuits
An SPICE compatible model for multiple coupled nonuniform lossless transmission lines (TL's) is presented. The method of the modeling is based on the steplines approximation of the nonuniform TLs and quasi-TEM assumptions. Using steplines approximation the system of coupled nonuniform TLs is subdivided into arbitrary large number of coupled uniform lines (steplines) with different characteristi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013